High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis

نویسندگان

  • Bilel Chouchene
  • Tahar Ben Chaabane
  • Lavinia Balan
  • Emilien Girot
  • Kevin Mozet
  • Ghouti Medjahdi
  • Raphaël Schneider
چکیده

Ce-doped ZnO (ZnO:Ce) nanorods have been prepared through a solvothermal method and the effects of Ce-doping on the structural, optical and electronic properties of ZnO rods were studied. ZnO:Ce rods were characterized by XRD, SEM, TEM, XPS, BET, DRS and Raman spectroscopy. 5% Ce-doped ZnO rods with an average length of 130 nm and a diameter of 23 nm exhibit the highest photocatalytic activity for the degradation of the Orange II dye under solar light irradiation. The high photocatalytic activity is ascribed to the substantially enhanced light absorption in the visible region, to the high surface area of ZnO:Ce rods and to the effective electron-hole pair separation originating from Ce doping. The influence of various experimental parameters like the pH, the presence of salts and of organic compounds was investigated and no marked detrimental effect on the photocatalytic activity was observed. Finally, recyclability experiments demonstrate that ZnO:Ce rods are a stable solar-light photocatalyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visible emission from Ce-doped ZnO nanorods grown by hydrothermal method without a post thermal annealing process

Visible light-emitting Ce-doped ZnO nanorods [NRs] without a post thermal annealing process were grown by hydrothermal method on a Si (100) substrate at a low temperature of 90°C. The structural investigations of Ce-doped ZnO NRs showed that the Ce3+ ions were successfully incorporated into the ZnO lattice sites without forming unwanted Ce-related compounds or precipitates. The optical investig...

متن کامل

Visible Light-Driven Photocatalytic Performance of N-Doped ZnO/g-C3N4 Nanocomposites

N-doped ZnO/g-C3N4 composites have been successfully prepared via a facile and cost-effective sol-gel method. The nanocomposites were systematically characterized by XRD, FE-SEM, HRTEM, FT-IR, XPS, and UV-vis DRS. The results indicated that compared with the pure N-doped ZnO, the absorption edge of binary N-doped ZnO/g-C3N4 shifted to a lower energy with increasing the visible-light absorption ...

متن کامل

Sunlight Photocatalytic Activity Enhancement of WO3/ZnO Nanorod Composites for Degradation of Bisphenol A

Nanoscaled WO3 particles coated on ZnO nanorod composites were fabricated through combining hydrothermal technique with chemical precipitation process. The configuration, crystal structure and element composition of the as-prepared WO3/ZnO nanorods were characterized by field-emission scanning electron microscopy (FESEM), transmission electron microscope (TEM) along with a high resolution trans...

متن کامل

Fast UV detection by Cu-doped ZnO nanorod arrays chemically deposited on PET substrate

Well-aligned Cu-doped ZnO nanorods were successfully synthesized on polyethylene terephthalate (PET) substrate using chemical bath deposition method. The structural and optical properties of Cu-doped ZnO nanorods were investigated using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy...

متن کامل

Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods

Herein we explore the role of localized plasmonic heat generated by resonantly excited gold (Au) NPs on visible light driven photocatalysis process. Au NPs are deposited on the surface of vertically aligned zinc oxide nanorods (ZnO NRs). The localized heat generated by Au NPs under 532 nm continuous laser excitation (SPR excitation) was experimentally probed using Raman spectroscopy by followin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016